LF Network Analyzer

Frank Gentges K0BRA AMRAD

fgentges@mindspring.com

10/6/02

What and Who Is AMRAD?

- AMRAD is the Amateur Radio Research and Development Corporation
 - AMRAD develops technologies for amateur radio and functions much like a radio club
- AMRAD meets once a month locally
- AMRAD meets informally once a week on Saturdays at Tippy's Taco House on Lee Highway at around 12:30

What Is AMRAD Doing for LF

- FCC has issued an NPRM for amateur LF allocation
- AMRAD has experimental license for LF
 - ✓ Part 5 license issued by FCC
 - ✓ Single frequency of 136.75 kHz
 - ✓ AMRAD has been operating under this license and learning about LF.
- ✓ AMRAD Developing LF Technology
 - ✓ LF Test Equipment for:

"The Well Equipped LF Laboratory"

LF Current Transformer Design

- Texts generally describe current transformers poorly
 - Assume short circuit across output
 - Neglect magnetizing current
 - Limits wideband use for accurate measurement
 - AMRAD developed more complete understanding of LF current transformer

Current Transformer

Ferrite Core

AMRAD Current Transformer Model

- Accounts for magnetization current
- Leads to more optimum design
- Use computer spreadsheet to optimize designs
- Suggests a simple approach to an impedance meter
 - ✓ Minimize sources of error on spreadsheet

LF Analyzer Concept

- ✓ Use current transformer to read load current
 - \checkmark Current is measured as voltage
 - ✓ Phase angle measured between driving voltage and voltage from current transformer
- Meter reads load impedance magnitude and phase over a wide range
- Better than classic network analyzer or grid dip meter for the
- "Well Equipped LF Laboratory"

LF Analyzer Transformer

- ✓ Use coaxial test lead through core✓ Test current down center conductor
 - ✓ Confine stray currents back through shield
 - ✓ Current Transformer output magnitude only reflects actual load current

Minimize phase shift in transformer

 Current transformer output phase accurately reflects voltage and current phase relationship

Network Analyzer Transformer

Implementing LF Analyzer

Option 1

- ✓ USE DDS for signal source
- ✓ Use Logamp to measure signal amplitudes
- ✓ Control DDS and read logamp signal with microprocessor

Option 2

- ✓ Use DDS for signal source
- ✓ Use second DDS and DBMs with IF amps and digital attenuators to read signal levels
- \checkmark Use microprocessor to control DDSes and attenuators
- \checkmark In both cases, use PC to control and report results

LF Analyzer Utility

- LF Measurement Swiss Army Knife
 - Wider Z range than classic network analyzer
 - ✓ Coil inductance and Q
 - ✓ Antenna impedance before tuning
 - ✓ Quartz crystal impedance
 - ✓ Capacitance
 - ✓ Amplifier input impedance
 - ✓ RF transformer impedance

Initial Tests

- Current transformer can be made to cover 10 kHz to 16 MHz with low residual errors
- Inexpensive logamps can cover 60 dB with magnitude errors less than 1 dB
- LF current transformer design seems to center on 1 amp = 1 volt.
 - Large excursions present too much error
 - Testing with voltmeters on both E and I channels suggests impedance magnitude could be expressed in dB re:1 ohm

Transformer Design

- FT-50-75 Core, permeability of 5000
 Primary: 1 turn, brass tubing with coaxial wire
- ✓ Secondary: 25 turns #30 wire wrap wire
- Secondary termination: 50 ohms
 - Shielding to concentrate stray capacitance to "guard" terminal only

Conclusion

- LF Network Analyzer based on a wideband current transformer can be made to cover a wide range of impedances
 - Use of DDS and microprocessor control can simplify use, measurements and error corrections
 - Use simple version as VSWR meter alternative